NASAL MORPHOLOGY ASSESSED THROUGH POWEL’S TRIANGLE IN PATIENTS WITH CONVEX PROFILE

SAQIB NAEEM
SAAD ASAD
AROOJ ZAFAR

ABSTRACT
Introduction: It can safely be said that nose has a great impact on the facial appearance of a person. An orthodontist must keep this consideration in mind while planning treatment. Too big or too small nose can be camouflaged by tooth movements. If the prominence and length of the nose is acceptable to the patient, it must be made sure that it remains the same way even after the orthodontic treatment. Moreover some orthodontic procedures like Rapid Palatal Expansion, face mask therapy, extractions and orthognathic surgery has an effect on the nasal morphology. Aim of this study is thus to assess nasal morphology in patients with convex profile using Powell’s Aesthetic Triangle, with the objective that this will help in planning the orthodontic cases better.

The study was conducted on lateral profile photographs of thirty five patients at university College of Dentistry, The University of Lahore. All reported patients, ages twelve and above, who had retrognathic profile on visualization were selected irrespective of their sex and their nasal morphology was assessed by Powell’s Aesthetic Triangle.

In patients with retrognathic profile and the Dental Class II div 1 Nasomental angle was found to be decreased 119±2.28, Naso-frontal angle was found to be increased 141.70±6.06 and Naso-facial angle was found to be similar 36.46±3.05 to the values in patient with orthognathic profile.

In patients with retrognathic profile a decrease in nasomental angle, an increase in naso-frontal angle and comparable nasofacial angle were recorded.

Key Words: Powell’s Triangle, Nasomental Angle, Nasofacial Angle and Nasofrontal Angle.

INTRODUCTION

In the recent past there is a shift of paradigm from Angles to soft tissue profile as soft tissues largely determines the limitations of orthodontic treatment, from the perspectives of esthetics, function, anchorage planning, retention, relapse and stability.\(^1,2\) Growth modification and surgical orthodontics are also aimed at improving the esthetics.\(^3,4\) Surgical camouflage including rhinoplasty, genioplasty, cheiloplasty and maloplasty as adjunctive orthodontic procedure has become popular in the recent past again with the aim to improve the profiles.\(^5,6\) Orthodontist thus must plan treatment within the patient’s limits of soft tissue adaptation and soft tissue contours.

Nose is one of the most important parts on face other than lips and chin. There is direct impact of expansion, face mask therapy, extraction decision, growth modification, surgical orthodontics and growth on the nasal appearance.\(^7-11\) Expansion therapy broadens the nose, early the expansion greater is the impact on the nasal width and nasal prominence.\(^7\) Face mask therapy improves the maxillary prominence but may affect adversely in patients with already short nose.\(^8\) Nasal prominence also effects the extraction decision as in patients with already prominent nose extraction of maxillary 1st premolars will further worsen the profile.\(^9\) Nasal morphology and prominence is affected by surgical maxillary impaction, advancement, setback and expansion.\(^10,11\) It is also important to note that nasal profile is different in patients with underlying skeletal sagital, transverse and vertical dysplasia.\(^12,13\) If we take the profile view and thus the sagital patient we find that patients with straight profile, convex profile and concave profile have different nasal morphology with a definite impact on diagnosis, treatment plan and treatment outcome.\(^14\)
Nasal morphology assessed through powel's triangle

The nose may be evaluated by direct clinical measurements (morphometry), by photogrammetry, by radiographs (cephalometry) or more recently by three-dimensional stereo-photogrammetric systems. However photographic methods have been rated as the easiest, reliable and least expensive for the nasal assessment and nasal deformity assessment. One of the most common methods for nasal assessment has been the Powel's triangle for nasal assessment. Aim of this study is thus to assess nasal morphology in patients with convex profile using Powell's Aesthetic Triangle, with the objective that this will help in planning the orthodontic cases better.

METHODOLOGY

The study was conducted on lateral profile photographs of thirty five patients who reported at the Orthodontic Department of the University College of Dentistry, The University of Lahore. All reported patients, ages twelve and above, who had retrognathic profile on visualization were selected irrespective of their sex. Ages twelve and above were selected only because nasal growth completes at age ten, if patients below twelve years are taken there is a chance that the length and prominence will change during the study. Selected patients were then examined intra orally to confirm that they had Class 2 dental relationship with normal angle (<SNM=32±4). Patients having previous history of orthodontic treatment, craniofacial disorders such as cleft palate, syndromic patients, history of facial trauma and obvious nasal deformity were excluded from the study. Before including the patients in the study, they were asked to give their formal consent. After the patients agreed to become a part of this study, their lateral photographs were taken in their natural head positions. Digital printouts were taken for each lateral photograph on 1:1 bases. This means that the patients’ actual facial measurements equal the measurements on the photograph. Powell’s Aesthetic Triangle was then analyzed for each patient. Powell’s Aesthetic Triangle includes following measurements as shown in Fig 1.

1. Nasofrontal angle (115-1300): it is formed by drawing a line tangent to glabella through the nasion that will intersect a line drawn tangent to nasal dorsum.

2. Nasofacial angle (30-400): it is formed by drawing a vertical line tangent to forehead at the glabella and tangent to the chin at the pogonion so that a line drawn along the nasal dorsum intersects it.

3. Nasomental angle (120-1320): The nasomental angle is described by a line drawn through the nasal dorsum intersecting a line drawn from the nasal tip to the soft tissue at the pogonion. This angle correlates with the tip projection, chin, and forehead.

SPSS 18.0 was utilized for analysis of data, whereas descriptive statistics for each parameter, for each patient were assessed.

RESULTS

The study was conducted on 35 subjects with retrognathic profiles with age range of 12-25 years. Descriptive statistics for each variable used in the study was calculated as shown in Table 1. In patients with retrognathic profile and the underlined Skeletal Class II pattern ANB>4º (Dental Class II div 1) Naso-frontal angle was found to be increased 143.21±3.72, Naso-facial angle was found to be normal 35.42±3.43 and Naso-mental angle was found to be decreased 114.89±3.16.

TABLE 1: DESCRIPTIVE STATISTICS

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>St. Dev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasofrontal Angle</td>
<td>115</td>
<td>123</td>
<td>119</td>
<td>2.28</td>
</tr>
<tr>
<td>Nasofacial Angle</td>
<td>128</td>
<td>153</td>
<td>141.7</td>
<td>6.06</td>
</tr>
<tr>
<td>Nasomental Angle</td>
<td>33</td>
<td>41</td>
<td>36.46</td>
<td>3.05</td>
</tr>
</tbody>
</table>

DISCUSSION

The study was conducted on thirty five patients who reported at the Orthodontic Department, University College of Dentistry, The University of Lahore to assess the nasal morphology in patients with retrognathic profiles. Many studies are present discussing different nose characteristics in a patient with orthognathic profile. However, little information is available on the relationship between nose characteristics in retrognathic profiles especially in Pakistani origin.
Arshad, T, Shaikh A and Fida M in their study found that Skeletal Class I, II, and III subjects have different nasal profiles. Ferrario VF et al assessed the effects of age, gender and skeletal class on size and shape of soft-tissue facial profile. They concluded that facial soft-tissue size and shape were influenced by age and sex and to a minor extent by skeletal class.

Gulsen A et al investigated the relationship between craniofacial structures and the nose in Anatolian Turkish adults through cephalometric evaluation. They confirmed that nasal length, prominence, and form are associated with height and length of the maxilla and the mandible. Genevoc et al in another study found different nasal morphology in patients with convex profile. Robison JM et al studied the relationship of skeletal pattern and nasal form. They investigated the relationship of skeletal nasal pattern and soft-tissue nasal form. This analysis indicated that more than 86% of patients in the sample of 123 demonstrated a correlation of nasal shapes with specific skeletal groupings. Patients with straight profiles tended to have straight noses; convex profiles accompanied convex nasal shapes; and concave profiles were found with concave nasal shapes. In this study nasal morphology was also found different in patients with convex profile based upon the Powell’s Aesthetic Triangle. On the other hand Saeid Sadeghian et al in their study on nasal profile in patients with Class II skeletal malocclusion in a sample of Iranian population concluded that all Class II patients have varied nasal forms and there is no significant relationship between skeletal pattern of Class II patients and their nasal form. Similarly in another study conducted by Nahidh M on the relationship of nose and skeletal pattern concluded that the sagittal relation parameters had no influence on the nasal parameters in contrary to the facial heights.

The nasomental angle is an angle between a line drawn through the nasal dorsum and a line drawn from the nasal tip to the soft tissue at the pogonion. This angle correlates with the tip projection, chin, and forehead and its Normal value of Nasomental angle is 120-132°. Arshad, T, Shaikh A and Fida M in their study found that Nasomental Angle in skeletal Class I is 128.33±10.95, in Skeletal Class II is 122.14±8.56 and in Skeletal Class III is 136.50±5.80. Mauya RP et al in another study found significantly lower nasomental angle. These results are comparable with our results for nasomental angle.

Nasofrontal angle is an angle between a line tangent to glabella through the nasion and a line drawn tangent to nasal dorsum. Its normal value is 115-130°. Milošević SA, Varga ML and Šlaj M in their study on Croatian sample with class I occlusion found nasofrontal angle in females= 139.11 degrees and in males 136.38 degrees. In this study higher nasofrontal angles were found in patients with convex profile.

Nasofacial angle is formed by drawing a vertical line tangent to forehead at the glabella and tangent to the chin at the pogion so that a line drawn along the nasal dorsum intersects it. Its normal value is 30-40°. Jain et al in their study found that nasofacial angle is between 20-45°. In this study higher nasofacial angles were found similar in patients with convex profile with those who have straight profile.

CONCLUSION

In patients with retrognathic profile (skeletal class II pattern) a decrease in nasomental angle, an increase in naso-frontal angle and comparable nasofacial angle were recorded.

REFERENCES

2. Proffit, WR.; White, RP.; and Sarver, DM. Contemporary Treatment of Dentofacial Deformity, Mosby, St. Louis, 2003.

CONTRIBUTION BY AUTHORS

Saqib Naeem: Main author.
Saad Asad: Supervisor.
Arooj Zafar: Helped in methodology & proof reading.