ORTHODONTIC ALTERATIONS ASSOCIATED WITH MOUTH BREATHING HABIT

BASHAR REYAD ELMOMANI
AHMAD MADALLAH TARAWNEH
HISHAM ABED KAREEM RASHDAN
KHALDOUN KHALID SHUQRAN

ABSTRACT

Objective of the study was to investigate the relation between mouth breathing habit as an etiological factor causing orthodontic alterations in a sample of growing children. A total of 67 children (24 females, 43 males) with a mean age of 9.3 years were referred from Ear, Nose and Throat clinic, who had mouth breathing habit of more than 6 months, and were 8-11 years and upon arrival to Orthodontic clinic. Comprehensive orthodontic assessment with extra and intraoral examinations were carried out.

This study showed the significant connection between mouth breathing habit and various orthodontic malocclusion traits. Upon patient extra-oral profile examination, a class II skeletal relation presented in 78% of patients, showing maxillary protrusion and/or mandibular retrognathia with more than 4mm profile convexity. Intra-orally, an increased overjet of 4mm or more was found to exist in 89.4% of this mouth breathing respiratory pattern sample. Open bite or reduced overbite of less than 1mm appeared to occur in 68%. Unilateral or bilateral posterior cross bites co-existed with class II molar angle relation in 65.7% of the mouth breathing habit sample. Finally, moderate to severe maxillary crowding was detected in 64.6% of the sample.

There was a great correlation between nasopharyngeal airway obstruction causing mouth breathing habit and the development of various skeletal and dental abnormalities, eventually leading to higher demand and need for orthodontic care.

Key Words: Breathing pattern, mouth breathing, skeletal and dental alterations, orthodontic malocclusion.

INTRODUCTION

Etiology of malocclusion in a contemporary perception is an interaction between an individual’s genetic background, and the environmentally influenced function. Oral function includes articulation, chewing and swallowing. Nasal breathing is the norm in order to attain correct growth and development of the craniofacial complex. Malocclusion can result from abnormal habits such as mouth breathing, to what extent does nasal resistance or mouth breathing influence the dentoskeletal complex has been under focus by many researchers over decades. One of the most common causes of mouth breathing in children is hypertrophied adenoids and/or tonsils, other reasons to cause this nasal obstruction or resistance conditioning mouth breathing is chronic and allergic rhinitis, nasal traumas, congenital nasal deformities, foreign bodies, polyps, and tumors. Linder-Aronson presented a hypothesis, stating that enlarged adenoids aggravate nasal breathing, this respiration pattern disrupts those muscle forces exerted by tongue, cheeks and lips upon the maxillary arch, these alternations in normal oral function can lead to anomalies usually affecting the maxillary and mandibular arches, and consequently lead to dental and orthodontic irregularities. Early investigators showed a skeletal problem of Angle’s class II division I malocclusion, while others indicated that children with mouth breathing often develop V-shape maxillary arch. This supports the

1 Bashar Reyad ELMomani BDS, MFDS RCSIr, M Orth RCSEd. Craniofacial Ortho. Fellow
2 Ahmad Madallah Tarawneh DDS, M Clin Dent. Orth.
3 Hisham Abed Kareem Rashdan MD, Jor.MB ENT.
4 Khaldoun Khalid Shuqran M.D, JorMB ENT.
1,2 from orthodontic department dental division at royal medical services, Amman Jordan.
3,4 from ear, nose and throat department from royal medical services. Correspondence address: Dr. Bashar R. ELMomani specialist orthodontist RMS, 0798986943 drbasharmomani@yahoo.com. PO box 541882 Amman Jordan.
Received for Publication: March 2, 2015
Revised: March 31, 2015
Revision Accepted: April 3, 2015
suggestion that nasal resistance or mouth breathing pattern is a risk factor for development of malocclusion.

On the other hand, a few have disagreed that mouth-breathing can affect the form of the jaw or create a malocclusion.10,11 Warren et al stressed that an individual’s breathing pattern results from environmental and genetic causes.12 With regard to nasal resistance other authors have stated that the adenoids have no direct cause-and-effect relationship with creation of malocclusion or mouth-breathing habit.13-14

Hence, the etiologic role of breathing pattern causing facial and dental alterations is as yet controversial, and most studies in that outlook are usually cross-sectional, with only few reports assessing mouth breathing as a long term habit in children at late mixed dentition stage. While, in orthodontic practice patients aged between 12-17 years are provided orthodontic treatment15, which upon clinical examination mouth breathing or poor lip seal is often present, but it is usually hard to investigate the extent of mouth breathing etiology causing such facial and dental alterations. The purpose of this study was to investigate the association between mouth breathing habit and presence of malocclusion in a sample of non-orthodontic Jordanian children aged 8-11 referred from ear nose and throat clinic showing more than 6 months mouth breathing pattern.

METHODOLOGY

A total number of 67 patients (24 females, 43 males) mean age 9.3 years were followed from March 2010 to March 2011 at Prince Rashed Military Hospital for mouth breathing habit at ear nose and throat outpatient clinic and referred to orthodontic clinic provided they had the following inclusion criteria:

1. Patient age between 8-11 years of age.
2. No current or previous orthodontic treatment.
3. Patient medical history showing at least 6 months of mouth breathing pattern.
4. Patient consent to be referred for orthodontic examination.

Upon arrival to orthodontic clinic, first author performed a full orthodontic assessment following American Board of Orthodontics (ABO) clinical diagnostic examination sheet, this form was completed at orthodontic clinic along with brief parent’s interview. Statistical analysis was done for those examined orthodontic traits.

RESULTS

This study showed the significant connection between mouth breathing habit and various orthodontic malocclusion traits. Upon patient extra-oral profile

<table>
<thead>
<tr>
<th>TABLE 1: DISTRIBUTION OF SUBJECTS BY AGE AND GENDER</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 years</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>
n represent the number of patients

evaluation, a class II skeletal relation presented in
78% of patients, showing maxillary protrusion and/or
mandibular retrognatia with more than 4mm profile
convexity.

Intra-orally, an increased overjet of 4mm or more
was found to exist in 89.4% of this mouth breathing
respiratory pattern. Open bite or reduced overbite of
less than 1mm appeared to occur in 68% of this study
sample. Unilateral or bilateral posterior cross bites
co-existed with class II molar angle relation in 65.7% of
the mouth breathing habit sample. Finally, moderate
to severe maxillary crowding was detected in 64.6% of
the sample.

DISCUSSION

Respiratory pattern and its influence on the develop-
ment of Dentofacial structures has been a subject
of investigation for many researchers over decades.
Whether an individual is a nasal or mouth breather,
various studies have discussed the possible influences
of these respiratory patterns on the functional, neu-
romuscular, skeletal and dental functions.16,17,18

Mouth breathing usually develops as a consequence
of nasal resistance, whether patient had surgical in-
tervention or not, this habit may become apparent at
late mixed dentition stage at 8-11 years of age, this
study investigated various orthodontic traits to exist
at this age by cooperation and referral from ear nose
and throat clinic. Previous researchers as Ricketts
differentiate the main characteristics of the respiration
obstruction syndrome which are presence of hypertro-
phied tonsils or adenoids, oral breathing, open-bite
tendency, cross-bite, other features include excessive
anterior face height, incompetent lips, and V-shaped
maxillary arch.19 Harvold et al. experimentally induced
nasal obstruction in animals, which resulted in mouth
breathing and caused maxillary narrowing, increased
lower face height, and consequently malocclusion and
dental anomalies.20

Other recent Japanese researchers went even
further claiming that lip seal may have an effect on
occlusal traits such overbite, overjet and even dis-
rupts oral muscle forces21 some claim that abnormal
head posture could be due to abnormal functions such
mouth breathing, tongue thrusting, and this can lead
to the development of malocclusion and alters head
posture.22,23

While other studies refused the association of mouth
breathing habit and the etiology of mouth breathing,
as Klein found there is no conclusive evidence that
obstruction of nasal respiration alters facial growth
and patient development.24 other authors disagreed
that facial morphology and the respiratory mode are
intimately related.17,18

In this descriptive study anteroposterior relations
as class II malocclusion and overjet along with maxi-
llary crowding were positively correlated with mouth
breathing habit.

Vertically, Anterior open bite or reduced overbite
was found to exist higher than normal population.
Further, transversely depicted in posterior crossbite
and narrow deep maxillary arch was also present
positively in mouth breather, all this correlates with
Ricketts and Harvold keystone studies in this field as
referred above.

In the present study, no investigation of the exact
cause of an individual nasal resistance was carried out;
norther the severity of nasal resistance was assessed,
as we believe that neither the severity of adenoids
obstructive size or cause of obstruction is a risk factor
in development of class II malocclusion, presence of an-
terior open bite and or posterior cross bite occurrence.24

CONCLUSION

There was a great correlation between nasopha-
ryngeal airway obstruction (mouth breathing habit)
which cause changes in muscular function, and dental
orthodontic anomalies. Patients/parents should be made
aware about the importance of healthy respiratory pat-
tern in growing children to attain normal dentoskeletal
growth pattern.

REFERENCES

1 Harris, JE, Kowalski CJ. All in the family; use of familial information in orthodontic practice, case assessment, and treatment planning. Am. J. Orthod 1976, 69, 495-510.

Mouth breathing habit

13 Leech HL. A clinical analysis of orofacial morphology and behavior of 500 patients attending an upper respiratory research clinic. Dent Practit 1958; 9: 57-68.

